
Avoid Everything
Model-Free Collision Avoidance with Expert-Guided Fine-Tuning

Adam Fishman1, Aaron Walsman1, Mohak Bhardwaj1, Wentao Yuan1,
Balakumar Sundaralingam2, Byron Boots1, and Dieter Fox1,2

Abstract— The world is full of clutter. In order to operate
effectively in uncontrolled, real world spaces, robots must navi-
gate safely by executing tasks around obstacles while in proxim-
ity to hazards. Creating safe movement for robotic manipulators
remains a long-standing challenge in robotics, particularly in
environments with partial observability. In partially observed
settings, classical techniques often fail. Learned end-to-end
motion policies can infer correct solutions in these settings, but
are as-yet unable to produce reliably safe movement when close
to obstacles. In this work, we introduce Avoid Everything, a novel
end-to-end system for generating collision-free motion toward a
target, even targets close to obstacles. Avoid Everything consists
of two parts: 1) Motion Policy Transformer (MπFormer), a
transformer architecture for end-to-end joint space control
from point clouds, trained on over 1,000,000 expert trajectories
and 2) a fine-tuning procedure we call Refining on Optimized
Policy Experts (ROPE), which uses optimization to provide
demonstrations of safe behavior in challenging states. With
these techniques, we are able to successfully solve over 63%
of reaching problems that caused the previous state of the art
method to fail, resulting in an overall success rate of over 91%
in challenging, partially observed manipulation settings.

I. INTRODUCTION

The world is full of clutter. Humans effortlessly navi-
gate through complex, unfamiliar spaces while constantly
avoiding hazardous collisions. Robotics has not solved this
key challenge, which is critical to real-world success of
robotic actors [1]. Avoiding collision is one of the most
important considerations in robot safety, and many important
robotics settings such as kitchens, factories and warehouses
are dynamic, restricted, and cluttered. For robotic arms,
this problem is especially pronounced due to their complex
kinematics (see Fig. 1).

However, many leading methods for collision avoidance
rely on a stable, accurate, and fully observed representa-
tion of the robot’s workspace. Traditional motion planning
approaches [2], [3] attempt to explore free space to find
a collision-free trajectory. Some of these techniques have
rigorous theoretical guarantees that a plan (if one exists)
will almost surely be found. Many strategies exist to find a
valid path, often by searching through a predefined graph [4],
[5] or by sampling the state space to incrementally build
a tree [6]–[8]. These approaches can require hundreds or
thousands of computationally expensive geometric collision

1University of Washington, {afishman,
awalsman, mohakb, wentaoy, bboots,
fox}@cs.washington.edu

2Nvidia, balakumars@nvidia.com

Fig. 1. Avoid Everything is able to generate collision-free trajectories
around complex obstacles in real time, using input from a single depth
camera.

checks based on an occupancy model, although there are
many techniques to mitigate this disadvantage, e.g. lazy
edge evaluation [9], [10] and parallelism [11]. Trajectory
optimization seeks to find an ideal trajectory according to a
set of objectives, typically using soft constraints defined by a
differentiable environment model. While these methods can
produce smooth motion quickly [12], [13], they require more
information about an environment than typical motion plan-
ners, such as surface normals, to produce gradients. Whether
these methods are using search, sampling, or optimization,
they require an accurate world model that is either predefined
or reconstructed from sensor data. When the world model
is inaccurate, the planners may produce unsafe behavior.
Furthermore, the real-time performance of these methods can
be highly sensitive to the actual distribution of obstacles the
robot encounters [14].

Building an accurate world model, particularly in clut-
tered spaces, is an open problem [15]. End-to-end imitation
learning is a popular technique that learns behavior without
explicitly modeling the world, instead relying on patterns
in how the expert behaves in response to the environment.

However, these methods face the challenge of learning to
avoid collisions from collision-free demonstrations alone. To
address this, traditional motion planners can be used to track
the paths produced by the network [16], [17] or directly
incorporate a predefined world model into the learning
framework [18]. These systems have the same limitations
as traditional ones. When the world model is inaccurate,
the system may collide. While expert demonstrations can
be made collision-free, learning collision avoidant behavior
necessitates a deep understanding of the interplay between
the scene geometry and the robot’s kinematics. Successful
approaches have employed large datasets [19], [20] or ex-
plicit losses to encourage obstacle avoidance [20]. However,
these techniques still fail in complex problems, leading
to constrained capabilities [20] or continued reliance on
traditional collision checking techniques [18], [21].

To address these challenges, we present Avoid Everything,
an end-to-end system that uses point clouds to generate goal-
directed, collision-free motion for a robotic manipulator in
cluttered 3D scenes. Avoid Everything uses a new network
architecture Motion Policy Transformer (MπFormer) that is
trained end-to-end using expert supervision from a motion
planner. Our model predicts single-step changes in joint
configuration using point cloud observations, the robot’s
current configuration, and a target end effector pose. We also
introduce a fine-tuning approach inspired by hard negative
mining [22], [23]: Refining on Optimized Policy Experts
(ROPE). ROPE is critical to reducing the collision rate in
reaching toward the target. Through experiments, we show
that Avoid Everything is able to safely solve over 63% of
problems where the previous state of the art method [20]
fails, resulting in an overall success rate of over 91% in
challenging, partially observed manipulation settings. We
also demonstrate that ROPE can be used as a general tool
to reduce collisions, even in conjunction with DAgger [24],
a standard technique for improving imitation performance.

Our primary contributions are:
1) We present Motion Policy Transformer, a new model

architecture designed for predicting goal-directed robot
motion from a point cloud and target location.

2) We present Refining on Optimized Policy Experts,
a novel fine-tuning algorithm for learning collision
avoidance in robot motion generation.

3) We demonstrate empirically that Avoid Everything re-
duces the collision rate of the previous state of the art
by over 77% and improves success rate by 63%.

II. RELATED WORK

a) Reactive Control and Motion Planning: Robot mo-
tion generation has traditionally been studied in the context
of motion planning with a vast literature of methods [25],
[26] based on graph search [4], [5], [27], sampling-based
motion planning [2], [6], [10], [28]–[30], and trajectory
optimization [13], [31]–[33]. While modern motion planning
frameworks can achieve low control latency [12], [34], [35],
they assume complete knowledge of the environment and
make strong assumptions about obstacle representations for

fast collision checking. Perception-driven reactive control of
robots also has a rich history. Operational Space Control
(OSC) methods such as [36]–[38] can enable robots to
perform highly dynamic tasks at high control frequencies.
However, their myopic nature can lead to local minima in
the presence of obstacles. In a similar spirit to our work,
Model-Predictive Control (MPC) approaches [39], [40] try
to balance reactivity and planning horizon; however, real-
time requirements often warrant the use of simple obstacle
representations and short horizons that can still lead to local
minima.

b) Point Cloud Processing: Point clouds, unordered
sets of 3D points, are a lightweight and convenient 3D
representation. Unlike other 3D representations such as
meshes or Signed Distance Functions (SDFs), it is much
easier and faster to obtain 3D point clouds from sensors
such as depth cameras. As a result, many recent works
choose to infer semantics and affordance from point clouds
directly, skipping the need for 3D reconstruction. Leveraging
powerful neural backbones that process point sets [41], [42],
existing networks can segment objects [41], plan grasps [43]
and check collisions [44] from partial point clouds only.
Following the same spirit, in this work we show how to
reliably generate collision-free joint trajectories from raw 3D
point clouds.

c) Imitation Learning: Imitation learning describes a
broad class of techniques to learn a policy from demon-
strations, often made by a privileged expert [45]. Among
imitation learning techniques, behavior cloning [46], [47]
describes a set of techniques where a policy is directly trained
to mimic an expert’s actions. In manipulation, these actions
are often phrased as end effector waypoints [16], [17], [48],
[49], but these methods require a separate planner and colli-
sion checker to perform tasks safely. Recently [50], [51] have
demonstrated strong capabilities for using transformers [52]
to solve complex manipulation tasks with images as input
and joint controls as output. Inspired by these methods, our
architecture produces joint space controls given point cloud
input.

One common challenge with imitation learning is the
problem of covariate shift. Learned policies typically have
some small error in prediction. As the error accumulates,
the policy will encounter unseen regions of the state space.
While many techniques have been proposed to address this
issue, a common strategy is to add a wider variety of possible
states into the training dataset. This can be done with noise
injection—Laskey et al. [53] use a purposefully noisy expert
during data collection, while Ke et al. [54] use training-time
noise injection to augment previously collected data. It can
also be done by fine-tuning a pretrained policy. DAgger [24]
uses the pretrained policy to augment the training data by
providing expert demonstrations from states visited by the
policy. A related technique can be found in computer vision
called Hard Negative Mining [22], [23], which augments
the training data by labeling the explicit failures (the hard
negatives) from a pretrained model before either retraining
or fine-tuning. Our technique draws inspiration from both

DAgger and Hard Negative Mining to explicitly correct the
difficult states found from a pretrained model.

d) Learned Motion Planning: For the task of motion
planning, imitation learning can be used either end-to-end
or as a component of a traditional system. Some methods
use learning to guide a traditional planner, either through
a learned sampler [55]–[58] or a learned heuristic func-
tion [14], [59]. Other techniques [19], [40] rely on a learned
collision model [60]. Motion Planning Networks [21] uses a
point cloud neural network to generate waypoints that are
then verified with a traditional collision checker. Saha et
al. [18] uses a diffusion model to produce plans based on
the the SDF representation of the environment. Our neural
architecture is most similar to Motion Policy Networks
(MπNets) [20], which expects a segmented, calibrated point
cloud and produces joint space controls. Despite its strong
performance on a variety of problems, MπNets is trained
with an expert that is smooth but incapable of reaching
close to obstacles. As we discuss in Section V-A.3, when
the MπNets architecture is trained and evaluated on more
challenging problems (using a more expressive expert), the
policy often collides.

III. METHODOLOGY

In the following section, we describe our policy archi-
tecture, training implementation, and ROPE, our fine-tuning
strategy that introduces hard negatives and explicit correc-
tions.

A. Behavior Cloning for Collision Avoidance

Avoid Everything is a single-step policy that takes in a
point cloud of the scene Pt, a 6-DoF target end effector pose
p, and the robot’s joint configuration qt, where t represents
the current timestep. The scene point cloud Pt is augmented
with points sampled from a mesh of the end effector placed
at the target pose p and points sampled from the robot arm
at joint configuration qt, as shown in Fig. 2. This geometric
representation of joint state qt and target pose p has superior
performance over a numerical representation [20]. The output
of Avoid Everything at timestep t is a delta joint configuration
∆qt, which is added to the current joint state qt to form a
position target for the robot to follow.

1) Architecture: MπFormer uses PointNet++ [41] to en-
code the point cloud and a transformer [52] to fuse the point
cloud features with a representation of the current joint state.
The input point cloud has a feature vector of length 4 for
every point. All obstacles are assigned the same feature, all
target points are assigned the same feature, and each robot
point, which are sampled deterministically from the robot’s
mesh, is assigned a unique feature to disambiguate points on
the arm. Our PointNet++ encoding architecture consists of
three Set Aggregation (SA) layers. SA layers are a sparse 3D
analog to convolutional layers. Each layer receives a point
cloud where each point has a feature and outputs a smaller
point cloud by using furthest point sampling to select 1

4 of
the points. Then, each sampled point is used as the center of
a ball query. The ball query samples up to 64 points inside

the ball and concatenates the ball center’s coordinates to each
point’s feature vector. A four-layer MLP is then run on each
point and MaxPool [61] collects the points inside the ball
to produce a single feature per ball. The layers’ ball queries
have radii of 5, 30, and 50 centimeters respectively. Our input
point cloud always has 6,272 points–4,096 obstacle points,
2,048 robot points, 128 target points. The downsampled point
cloud after the third set aggregation layer has 98 points.
Finally, we add 3D positional encoding to each of these 98
points, similar to [43].

The transformer takes a sequence of tokens as input,
consisting of the 98 output features of the third SA layer,
a token for the current joint configuration, and a learned
constant token, similar to the decoder tokens in [50]. We
get the joint angle token by passing the joint angles, which
are normalized to be between -1 and 1, through a single
linear layer. Our transformer has 8 layers with an embedding
dimension of 512 and a feed-forward dimension of 2,048. To
produce the final output ∆q, we take the last token of the
output sequence and map it through a single linear layer.

2) Loss Function: We train Avoid Everything according
to the same loss functions as MπNets [20]: a task-space
behavior cloning loss to encourage the policy to mimic
the expert’s behavior in task space, as well as a collision-
avoidance loss. These losses are applied on predicted joint
states, which are computed by adding the model’s output
(joint angle deltas) to the input joint angles and clamping
the sum at the joint limits.

a) Task Space Loss: The aim of this loss is to compare
the physical positions of the policy’s predicted robot joint
space configuration and the expert’s joint space configu-
ration. For both configurations, we use forward kinematic
functions ϕ{i}(·) to map joint angles of the robot q to
1,024 points x{i} on the robot’s surface, represented in 3D
coordinates.

LBC(∆̂q) =

1,024∑
i=0

∥x̂i − xi∥2 + ∥x̂i − xi∥1 (1)

Like MπNets, we sum L1 and L2 distances in the loss
because the sum penalizes both large and small errors. We
use a task space loss following MπNets, which demonstrated
it to be more effective when reasoning about collision
avoidance as small perturbations along the kinematic chain
can lead to large deviations for the end effector.

b) Collision Avoidance Loss: The training data was
generated in simulation, giving us access to privileged in-
formation unavailable during inference, including a signed-
distance representation of the scene. To avoid collisions, we
use a hinge-based loss on D(x), the signed distance from
a point x on the robot to the nearest surface in the scene.
Inspired by motion optimization [13], [31], [62], this loss
effectively pushes the robot out of regions of collision. As
in Equation 1, we use 1,024 points x{i} on the robot’s surface

Point Cloud Embedding Tokens

Unused Output Tokens

Current Joint State Token

Delta Joint
Configuration

s

Self Attention + Feed Forward (8x)

PointNet FeaturesSegmented Point CloudCalibrated Point Cloud

Obstacle Points
Re-inserted Robot Points
Inserted Target Points

Constant Token

Fig. 2. The input to MπFormer is a labeled point cloud, consisting of 4,096 points from the depth image (with robot removed), 2,048 points sampled
from the robot mesh at the current configuration and 128 points from the gripper mesh placed at the desired target. The point cloud is encoded with 3
Set Aggregation [41] layers. The resulting features, along with an encoding of the current joint state and a learned query token, are passed through 8
transformer layers. Finally, the output token that corresponds to the query token is decoded into a delta joint configuration.

to measure collision.

Lcollision =
∑
i

∥h(x̂i)∥2, where

h(x̂i
t+1) =

{
−D(x̂i), if D(x̂i) ≤ 0

0, if D(x̂i) > 0

(2)

3) Training Implementation: Avoid Everything was
trained on an NVIDIA 4090 in batches of 50 using
AdamW [63] with a learning rate of 5e−5 and a linear
warmup of 5000 steps from 1e−5. On the cubby environ-
ment, the model was trained for 1.2 million steps, which took
approximately four days.

During training, we add small amounts of random noise
to the input configurations, which [54] showed leads to
improved robustness. Like MπNets, the training scenes are
constructed from primitives, so point clouds can be gen-
erated on the fly during training by sampling points from
the surfaces of these primitives. Robot points are sampled
deterministically from the mesh of the robot. When Avoid
Everything runs on the real robot, we mask out the robot
points in the depth cloud and re-insert them using the same
deterministically sampled points from training.

B. Expert-Guided Fine-Tuning

After pretraining on a large dataset of expert state-action
pairs, we observe that the policy is highly capable of reaching
the target pose. Despite the reaching success, however, it still
collides with objects in a significant percentage of problems
in the held-out validation set (see Section V-A.1). When we
roll out the pretrained policy in simulation, we observe that
the first obstacle penetrations are typically shallow and can
be pulled out of collision by optimizing the configuration
with respect to Equation 2. Based on this observation,
we introduce a novel technique of refining the pretrained
policy for improved collision avoidance using online fine
tuning, inspired by Hard Negative Mining [22], [23] and
trajectory optimization methods [13], [31], [63]. We outline
our method, which we call Refining on Optimized Policy
Experts (ROPE), in Algorithm 1. During the refining stage,
we take mini-batches of training data—the same data used
for pretraining—and roll out trajectories for a fixed horizon.
These trajectories can reach the target, collide, or neither.
If the trajectory collides, we capture the state preceding the

Algorithm 1: Refining on Optimized Policy Experts
Result: π

1 π ← πpretrained
2 b← Batch Size
3 r ← Correction Ratio
4 Dexpert ▷ Dataset containing expert demos

5 Bcoll ← {} ▷ Collision correction demos

6 Bfree ← {} ▷ Collision-free expert demos

7 for {state, next state, tgt, scene} in Dexpert do
8 s← state
9 for j ← 1 to N do

10 s′ ← π(s, tgt)
▷ If s′ collides, correct & add to

buffer

11 if COLLIDES(s′, scene) then
12 s̄′ ← CORRECT(s′, scene) ▷ Eq. 2

13 ADD(Bcoll, {s, s̄′, tgt, scene})
14 break
15 end

▷ If rollout finishes w.o. collision,

add orig. example to buffer

16 if REACHED(s′, tgt) or j = N then
17 ADD(Bfree, {state, next state, tgt, scene})
18 break
19 end
20 s← s′

21 end
22 if |Bcoll| > rb and |Bfree| > (1− r)b then

▷ Make batch & clear buffers

23 B ← {POP(Bcoll, rb), POP(Bfree, (1− r)b)}
▷ Compute loss, perform gradient

update

24 π ← UPDATE(π,B)
25 end

▷ Reached validation accuracy or timeout

26 if TERMINATION CONDITION(π) then
27 terminate
28 end
29 end

Fig. 3. Avoid Everything is trained separately in two classes of procedurally
generated environments. The first class is a 2x2 cubby with random
dimensions and positions. The second is a table of varying dimensions with
3 to 15 objects placed on it. We randomly sample start and goal poses
and use inverse kinematics to produce joint configurations to match the
poses. Our expert plans are generated in two steps: 1) run AIT* [8] with
a configuration space path length objective to find a collision free path; 2)
smooth the path with a spline-based shortcutting method [64] and resample
the path with a fixed step interval.

collision as input and optimize the colliding configuration
using Equation 2 to use as supervision and store this state-
action pair in a buffer. If the trajectory does not collide,
whether by successfully reaching the target or hitting the
maximum rollout length, we use a separate buffer and store
the input and output from the training batch, unmodified.
In order to perform a weight update on the policy, we use
a modified mini-batch made up of some proportion r of
corrected examples and some proportion 1−r of unmodified
expert examples. Once there are sufficiently many examples
in both buffers, we remove these examples, assemble them
into a modified mini-batch, and perform a weight update
according to the losses used during pre-training. As discussed
in Section V-A.5, increasing r leads to lower collision rate
but poor target convergence.

During fine-tuning, we continually use the latest policy to
perform rollouts, even as it is updated. We perform our op-
timization procedure using AdamW for simplicity, although
we expect other methods typical to motion optimization such
as Gauss-Newton or Levenberg-Marquardt may lead to a
faster fine-tuning procedure. In our best-performing fine-
tuning experiment, we reached peak performance after 21
hours of training.

IV. DATA GENERATION PIPELINE

We trained Avoid Everything on a large dataset of expert
demonstrations in procedurally generated environments, ex-
amples of which are shown in Figure 3. The environments
themselves were generated randomly and lie within two
categories: 2x2 cubbies with randomized dimensions, cubby
sizes, and world placement; and tabletops with a collection of
randomly placed obstacles. These environments are similar
to those demonstrated in MπNets, but they differ in two
key ways: we augmented the cubby design to encourage
reasonable expert behavior by adding a floor beneath the
robot, and we increased the complexity of the tabletop envi-
ronment by adding more objects and increasing the range of

reachable poses. Within these constructed environments, we
randomly sample end effector poses and their corresponding
inverse kinematics (IK) solutions, which we compute using
IKFast [65]. For the cubby environments, the poses are all
grasping positions inside a cubby. For the tabletop, the poses
are grasps pointing toward the lower hemisphere and placed
either near the table’s surface or on top of the objects.
We also add neutral configurations drawn from uniform
distribution around the robot’s default pose to the tabletop
data. These poses, for both types of environments, must be
at least 5mm away from obstacles. We then use AIT* [8]
with a path-length objective combined with a spline-based
shortcutting [64] to generate expert demonstrations. In our
planning pipeline, we impose a 20 second time limit in which
we sample uniformly from the robot’s configuration space,
marking any sample that is either in self-collision or within
5mm of an obstacle as invalid. During the smoothing stage,
we fit a collision and dynamics-aware spline to the planned
path while shortcutting. We then sample from the spline at
a fixed timestep, leading to paths with similar velocities, but
varying lengths.

We chose this sampling pipeline because it enables us
to produce expert demonstrations that lie precariously close
to obstacles. Previously, MπNets [20] demonstrated strong
performance when trained with a so-called Hybrid Expert,
which uses a reactive controller [66] to follow a planned
end effector path. While this expert is effective for learning,
it is highly conservative, preferring to stay far away from
obstacles. In their experiments, the authors demonstrated that
the hybrid expert demonstrations are insufficient to learn to
solve problems that lie very close to obstacles. With our
sampling expert, we chose a 5mm buffer from obstacles
because this is sufficiently close for most tasks. As we
designed our expert, we observed that increasing the collision
margin improves learned collision avoidance, but this limits
the expert’s ability (and thus, the policy’s ability) to plan to
targets near obstacles.

We trained Avoid Everything separately on each class
of environments. For the cubby model, we used 1.25 mil-
lion problems across 21,604 environments. For the tabletop
model, we used 2 million problems across 43,646 envi-
ronments. To generate this data, we used a single desktop
with a AMD Ryzen Threadripper 3990X 64-Core Processor.
Generating the cubby and tabletop data took four and six
days respectively.

V. EXPERIMENTS

In order to evaluate Avoid Everything’s performance, we
used a mix of quantitative experiments in simulation and
qualitative tests on physical hardware. Our simulated experi-
ments are in environments drawn from the same distribution
as our training data. However, there are no shared environ-
ments between the evaluation and training problem sets.

A. Simulated Experiments

Unless otherwise noted, the experiments described below
are performed on partially observed point clouds generated

TABLE I
Avoid Everything COMPARED TO STATE-OF-THE-ART PATH PLANNERS

UNDER PARTIAL OBSERVABILITY

Environment

Planner Perception Cubby Tabletop
SR (%) / SCR (%) / RSR (%) SR (%) / SCR (%) / RSR (%)

Avoid Everything 95.51 / 2.09 / 99.00 91.89 / 3.68 / 98.11

MπFormer 87.39 / 10.51 / 99.46 83.13 / 15.18 / 99.52

MπFormer w. ROPE 91.39 / 5.06 / 97.96 86.97 / 8.11 / 96.54

MπNets 81.63 / 15.21 / 98.98 77.58 / 16.51 / 95.06

MπNets w. ROPE 88.76 / 5.44 / 96.50 82.55 / 9.37 / 92.21

RRTConnect Octomap 32.68 / 67.16 / 99.52 46.52 / 53.30 / 99.62

cuRobo NvBlox 73.06 / 22.88 / 94.74 76.86 / 22.11 / 98.68

with synthetic depth images. Avoid Everything is not trained
with partially observed point clouds, but it is designed for
use in scenarios with only partial observability.

For these evaluations, we used 5,000 problems in each
of our cubby and tabletop environments (10,000 total). For
each environment, we captured a synthetic depth image from
a randomly positioned camera facing the scene. For each of
these images, we placed the robot at a fixed neutral starting
configuration and segmented the robot out of the image. To
randomize the camera, it was first placed in the scene at a
predefined location facing the robot and obstacles, and was
then rotated randomly by up to 30° about the z-axis (rotating
side to side), then again by up to 10° about the camera’s
local x-axis (tilting up and down). Both of these rotations
were applied using a fixed pivot point directly in front of the
camera. Finally, the camera was translated randomly along
the global z axis and y axes by up to 25cm.

Tables I and II report three metrics. Reaching Success Rate
(RSR) is the percentage of problems for which each method
could provide a path (collision-free or not) to within 1cm and
15◦ of the goal. Scene Collision Rate (SCR) is the percentage
of these paths that had a collision with the scene. Success
Rate (SR) is the percentage of problems that had a collision-
free solution to the goal, including self-collisions.

1) Avoid Everything: Avoid Everything is very robust to
partially observed point clouds. Robustness to perspective
changes and incompleteness is a well-understood property of
PointNet [67]. As described in Section III-A.1, the PointNet
layers use MaxPool [61] to aggregate data across spatial
regions. MaxPool selects a single salient feature and will
have a similar response given the presence of redundant
information, which leads the PointNet to be highly robust
to missing points. Without fine-tuning, MπFormer succeeds
in 87.39% and 83.13% of our cubby and tabletop problems.
However, after using DAgger and ROPE—the version we
label Avoid Everything in Table I—we see it succeed in
95.51% and 91.89% in the cubby and tabletop settings
respectively.

2) Classical Methods: While classical motion planners
are highly capable of finding collision-free solutions, some
even providing guarantees [70], this hinges on the ability
to verify states with a good perceptual model. In practice,
we have found that many of the perceptual models used in

Fig. 4. A typical failure case for classical planners is that they do
not account for collisions in unobserved regions. In this example, the
reconstructions from both Octomap [68] and NvBlox [69] leave large holes
due to occlusion. Avoid Everything is able to leverage learned priors to
produce safe movement without an explicit reconstruction.

classical planning lead to erroneous solutions, i.e. solutions
that the planner reported as valid when in fact they might
have a collision. We evaluated this with two different styles
of planners and their perceptual representations–see Figure 4
for examples of the perception. First, we evaluated with the
commonly used motion planning library MoveIt! [71] paired
with Octomap [68] for perception. We used an Octomap
with a resolution of 5mm and RRTConnect [72] (with a 5s
timeout) as the planner. In the cubby settings, we found that
the planner found a solution in 99.52% of the problems and
we attribute the remaining to noise that could be addressed
with a longer timeout. However, of these successful plans,
over 67% of them had collisions. We attribute this to the
randomness in the path due to the sampling procedure,
which leads the robot to move unnecessarily in unobserved
space. RRTConnect produced fewer collisions (53%) in the
tabletop setting, likely due to fewer or smaller holes in the
point cloud. We ran a similar test using a trajectory opti-
mization method designed to produce smooth trajectories,
cuRobo [12] and NvBlox [69]. This technique finds a path
in 94.74% of of cubby problems, but 22.88% of these trajec-
tories have collisions. We set the nvBlox resolution to 1cm
for this test after consulting with the authors of cuRobo [12].
While cuRobo also performed better in the tabletop setting,
the difference was not as large as RRTConnect (see Table
I). An advantage of these classical methods is that they did
not require special tuning or training for either environment.
Despite Avoid Everything having stronger performance in
both environments, we do not expect it to generalize to
wholly new settings as classical methods can.

TABLE II
Avoid Everything METRICS WITH VARYING REFINEMENT TECHNIQUES

Environment

F.T. Stage 1 F.T. Stage 2 Cubby Tabletop
SR (%) / SCR (%) / RSR (%) SR (%) / SCR (%) / RSR (%)

No F.T. 87.39 / 10.58 / 99.46 83.13 / 15.18 / 99.52

ROPE 91.39 / 5.06 / 97.96 86.97 / 8.11 / 96.54

DAgger 91.23 / 7.30 / 99.57 88.21 / 8.63 / 99.12

DAgger ROPE 93.92 / 3.64 / 99.41 89.97 / 5.67 / 97.94

Cons. DAgger 94.50 / 3.22 / 99.10 91.43 / 4.71 / 98.79

Cons. DAgger ROPE 95.51 / 2.09 / 99.00 91.89 / 3.68 / 98.11

3) Motion Policy Networks: Our system design is most
similar to MπNets, which is the state of the art for learned
end-to-end collision free motion. In order to evaluate our
method, we trained MπNets on our expert data and compared
it to MπFormer without any fine-tuning. We also fine tuned
both models using ROPE and compared the performance.
These results are shown in Table I. Without any fine-tuning,
we found MπFormer to outperform MπNets in both envi-
ronments. We attribute this difference to the attention layer
in our model, which maintains spatial structure of the point
cloud, which MπNets flattens in its decoder. Additionally,
we find that ROPE significantly improves the performance
of both models, cutting collision rates approximately in half.
However, after running ROPE on both algorithms, we find
that the reaching success rate degrades more for MπNets
through the fine-tuning process. MπFormer is better able
to adapt to the hard negative examples without losing the
ability to reach the target. Despite its improved success rate,
Avoid Everything is less suitable for high-frequency control
than MπNets. Running on a NVIDIA 4090 GPU, we can
run Avoid Everything at 33Hz; meanwhile, MπNets runs at
150Hz, although we have observed faster speeds on updated
hardware.

4) DAgger: One of the most common techniques for
fine-tuning a learned policy is DAgger [24]. DAgger aids
in accounting for distribution shift by asking the expert to
provide demonstrations at every state the pretrained pol-
icy would visit. Likewise, ROPE can be seen as a way
to account for distribution shift by correcting the policy
when it fails. While DAgger is a generally useful tool for
imitation learning, it requires making many costly calls to
the expert. In our case, each expert demonstration requires
20 seconds of computation time, which adds up quickly if a
demonstration is needed at every state visited by the policy.
We implemented two versions of DAgger as comparisons
and show the performance in Table 5. In the first version,
we ran the pretrained Avoid Everything through its entire
training data, collected the trajectories with collisions, and
requested an expert demonstration at every step leading up
the collision. We found that this technique can improve per-
formance, reducing the pretrained collision rate of 10.58%
in cubby setting to 7.30%, but it is not better than ROPE.
We attribute this to the fact that the DAgger corrections
use the same expert, which often veers very close (5mm)

Fig. 5. Fine-tuning can be run with different proportions r of hard negative
examples. As r increases, the collision rate goes down and target error
increases. We attribute this phenomenon to the model overfitting to the
hard negatives and forgetting the original behavior cloning objective.

to obstacles. To verify this, we tested a second version of
DAgger that uses a more conservative expert for corrections–
one with a 2cm collision buffer. We label this technique
Cons. DAgger in Table II. As discussed in Section IV, this
expert is more limited in the problems it can solve, e.g.
not those that either start or end within 2cm of obstacles.
However, we found that this version of DAgger significantly
improves collision avoidance without negatively impacting
reaching performance, dropping collision rate in the cubby
setting to 3.64%. We observe a similar drop in the tabletop
setting, bringing pretrained collision rate from 15.18% to
4.71%. Collecting DAgger demonstrations for the policy’s
failures on our training dataset required nearly five days on
a desktop with an NVIDIA 3090 GPU and an AMD Ryzen
Threadripper 3990X 64-Core Processor.

When used alone, ROPE outperformed DAgger with the
original 5mm expert in both the cubby and tabletop settings.
Meanwhile, fine-tuning with Cons. Dagger outperforms both.
However, we did not find ROPE to be to be mutually
exclusive of DAgger. With both versions of DAgger, we were
able to further improve performance by using ROPE as a
second fine-tuning step. The best performance came from
stacking the conservative DAgger technique with ROPE,
with success rates of 95.51% and 91.81% in the cubby and
tabletop settings respectively.

5) Balancing Collision Avoidance and Success Rate: We
aimed to determine the efficacy of ROPE by varying the
ratio of hard negative examples in each fine-tuning batch. We
set this parameter r as a constant value for the entire fine-
tuning procedure and studied how different values change
the performance (see Figure 5). For these experiments, we
looked only at the cubby setting and used fully observed
point clouds, similar to those used during training. We evalu-
ated 10,000 problems in unseen environments and observed a
monotonic decrease in collision rate as r increased. However,
we also observed a monotonic increase in the reaching error,
i.e. the minimum distance from the target after rolling out
for 70 time steps. With no fine-tuning, we measured an
average reaching error of 0.32cm and a collision rate of
7.5%. At r = 20%, we observe an average reaching error of
0.63cm with a collision rate of 2.3%. At r = 60%, collision

rate is below 1%, but reaching error averages 1.97cm. We
chose r = 20% for our other experiments, but the choice
of this parameter should be determined by the downstream
application and the criticality of collision avoidance. We
did not experiment with varying r during fine-tuning as a
function of performance, but we hypothesize that setting it
as a function of performance would improve results.

B. Performance on Real Robot Hardware

We deployed Avoid Everything on a physical Franka
Emika Panda robot using point clouds from a calibrated
depth camera. We used a dual-computer setup running ROS.
The control computer, which runs a real-time linux kernel,
has Intel(R) Core(TM) i7-4770 CPU with 16 Gigabytes of
RAM. The second computer, which runs Avoid Everything,
has an Intel(R) Core(TM) i9-9900K CPU, 32 Gigabytes of
RAM, and an NVIDIA Titan RTX GPU. We use a Kinect V2
for perception, which captures point clouds at approximately
10Hz. We use [73] for eye-on-hand calibration and [74] to
remove the robot from the depth cloud; we then re-insert
these robot points into the cloud using the deterministic
sampling method described in Section III-A.3. We are able
to run the model at approximately 25Hz on our hardware,
which allows for reactive motion. We send each predicted
action directly to a lower level joint controller [75].

The model is able to react to moving obstacles in the
scene, but due to speed of our camera, it can take up
to 140ms—100ms for the camera update, 40ms for the
model update—for the robot to react to an obstacle. We
expect that this reactivity could be improved with a faster
camera, a faster GPU, or both. We used our best performing
checkpoint, which was first fine-tuned with the conserva-
tive DAgger pipeline and then fine-tuned with ROPE (see
Section V-A.4). We observed that the model is excellent at
avoiding obstacles on the table when those obstacles are at
least partially observable by the camera. We commonly saw
collisions into obstacles that were fully occluded or out of
the camera’s field of view. We expect this issue could be
improved with additional cameras to obtain a more complete
point cloud. Many of the obstacles placed in front of the
robot were far outside the training distribution, yet the model
was able to avoid them easily. However, we found that highly
complex obstacles, particularly those with thin structures
(e.g. an office chair on its side) can result in collision. Not
only was this obstacle out of distribution, but the rear legs
were unobserved by the camera, leading to a compounding
of our two main challenges.

We found signs of generalization as well as challenges
with distribution shift. When we placed the target inside an
obstacle, we observed that the model tends to hover above the
obstacle without attempting to go in. This is despite the fact
that none of the targets in training were ever inside obstacles.
However, while this behavior occurred in the majority of
cases, the robot did sometimes try to push through an
obstacle to reach a target, especially when the obstructing
face of the obstacle was obscured from the camera. For
example, the top side of a tall box might not be visible by

the Kinect, which leads the robot to attempt to push through
the top to reach a target placed inside the box. Additionally,
the gripper of the Franka is nearly symmetric about the axis
that points from the wrist to the midpoint of the fingers.
Our training data consisted of randomly generated poses, but
these poses typically sampled from only half of the rotations
about this axis. When we provided an out-of-distribution
pose where the 180◦ rotation about this axis would be in
distribution, we observed the robot typically tries to exploit
the symmetry of the gripper and reach the symmetric in-
distribution pose. Depending on the application, these 180◦

rotations may or may not be acceptable. We believe this
could be fixed by increasing the variation of target poses
in the training set, adding a unique per-point embedding to
the gripper points to distinguish orientations, or both.

VI. LIMITATIONS

While Avoid Everything can be trained to have extremely
low collisions in complex environments, there are open chal-
lenges. First and foremost is the problem of generalization.
Avoid Everything performs well for in-distribution tasks, but
we do not expect it to perform well in obstacle configurations
that are far beyond anything seen during training or fine
tuning. Likewise, we would expect a high reaching error
for target poses that lie well beyond the training distribu-
tion. Second, we used a simple, gradient-based optimization
to provide corrections during fine-tuning. For particularly
complex environments, providing adequate corrections may
require more sophisticated techniques, e.g. those used in
[12]. Additionally, like other black box learned systems [20],
Avoid Everything provides no guarantees. Future work could
combine Avoid Everything with a traditional planner in fully
observed settings, similar to [21]. Finally, Avoid Everything
requires a significant amount of data and compute to train,
which can be expensive and environmentally harmful.

VII. CONCLUSION

Avoid Everything is an end-to-end system that can cre-
ate safe, collision-free motion toward a goal using only a
partially observed point cloud. The system consists of two
novel components, MπFormer and ROPE. MπFormer is an
end-to-end transformer architecture that produces joint space
controls toward a target. With no fine-tuning, MπFormer is
significantly better than MπNets, the existing state of the art
method for end-to-end collision-avoidant motion generation.
ROPE is a fine-tuning technique used to improve perfor-
mance by leveraging optimization to correct states where the
pretrained policy collides. While we find that ROPE can be
used to substantially improve the performance of MπFormer,
we also found that it can be used to improve MπNets as
well. When MπFormer and ROPE are used together as Avoid
Everything, we find that the result is markedly more capable
at generating collision-free reaching motion to a goal in
partially observed settings than other techniques.

REFERENCES

[1] A. Orthey, C. Chamzas, and L. E. Kavraki, “Sampling-based motion
planning: A comparative review,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 7, no. 1, p. null, 2024. [Online].
Available: https://doi.org/10.1146/annurev-control-061623-094742

[2] S. M. LaValle, J. J. Kuffner, B. Donald et al., “Rapidly-exploring
random trees: Progress and prospects,” Algorithmic and computational
robotics: new directions, vol. 5, pp. 293–308, 2001. [Online].
Available: http://msl.cs.uiuc.edu/∼lavalle/papers/LavKuf01.pdf

[3] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner,
“Manipulation planning on constraint manifolds,” in 2009 IEEE
international conference on robotics and automation. IEEE,
2009, pp. 625–632. [Online]. Available: https://ieeexplore.ieee.org/
document/5152399

[4] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for
the heuristic determination of minimum cost paths,” IEEE Trans.
Syst. Sci. Cybern., vol. 4, pp. 100–107, 1968. [Online]. Available:
https://ieeexplore.ieee.org/document/4082128

[5] M. Likhachev, G. J. Gordon, and S. Thrun, “Ara*: Anytime
a* with provable bounds on sub-optimality,” in NIPS, 2003.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/
2003/file/ee8fe9093fbbb687bef15a38facc44d2-Paper.pdf

[6] S. M. LaValle, “Rapidly-exploring random trees : a new tool for path
planning,” The annual research report, 1998. [Online]. Available:
http://msl.cs.illinois.edu/∼lavalle/papers/Lav98c.pdf

[7] S. Karaman and E. Frazzoli, “Sampling-based algorithms for
optimal motion planning,” The International Journal of Robotics
Research, vol. 30, pp. 846 – 894, 2011. [Online]. Available:
https://arxiv.org/abs/1105.1186

[8] M. P. Strub and J. D. Gammell, “Advanced bit* (abit*): Sampling-
based planning with advanced graph-search techniques,” 2020 IEEE
International Conference on Robotics and Automation (ICRA), pp.
130–136, 2020. [Online]. Available: https://arxiv.org/abs/2002.06589

[9] C. Dellin and S. Srinivasa, “A unifying formalism for shortest path
problems with expensive edge evaluations via lazy best-first search
over paths with edge selectors,” in Proceedings of the International
Conference on Automated Planning and Scheduling, vol. 26, 2016,
pp. 459–467. [Online]. Available: https://arxiv.org/abs/1603.03490

[10] J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, “Batch informed
trees (bit*): Informed asymptotically optimal anytime search,” The
International Journal of Robotics Research, vol. 39, no. 5, pp.
543–567, 2020. [Online]. Available: https://arxiv.org/abs/1707.01888

[11] W. B. Thomason, Z. K. Kingston, and L. E. Kavraki, “Motions in
microseconds via vectorized sampling-based planning,” ArXiv, vol.
abs/2309.14545, 2023. [Online]. Available: https://arxiv.org/abs/2309.
14545

[12] B. Sundaralingam, S. K. S. Hari, A. Fishman, C. Garrett,
K. Van Wyk, V. Blukis, A. Millane, H. Oleynikova, A. Handa,
F. Ramos et al., “Curobo: Parallelized collision-free minimum-jerk
robot motion generation,” arXiv preprint arXiv:2310.17274, 2023.
[Online]. Available: https://arxiv.org/abs/2310.17274

[13] J. Dong, M. Mukadam, F. Dellaert, and B. Boots,
“Motion planning as probabilistic inference using gaussian
processes and factor graphs.” [Online]. Available: https:
//www.researchgate.net/publication/304532888 Motion Planning as
Probabilistic Inference using Gaussian Processes and Factor Graphs

[14] S. Choudhury, M. Bhardwaj, S. Arora, A. Kapoor, G. Ranade,
S. Scherer, and D. Dey, “Data-driven planning via imitation
learning,” The International Journal of Robotics Research, vol. 37,
no. 13-14, pp. 1632–1672, 2018. [Online]. Available: https:
//arxiv.org/abs/1711.06391

[15] S. Garg, N. Sünderhauf, F. Dayoub, D. Morrison, A. Cosgun,
G. Carneiro, Q. Wu, T.-J. Chin, I. Reid, S. Gould, P. Corke,
and M. Milford, “Semantics for robotic mapping, perception and
interaction: A survey,” Foundations and Trends® in Robotics,
vol. 8, no. 1–2, pp. 1–224, 2020. [Online]. Available: http:
//dx.doi.org/10.1561/2300000059

[16] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis,
C. Finn et al., “Rt-1: Robotics transformer for real-world control
at scale,” ArXiv, vol. abs/2212.06817, 2022. [Online]. Available:
https://arxiv.org/abs/2212.06817

[17] M. Shridhar, L. Manuelli, and D. Fox, “Perceiver-actor: A multi-task
transformer for robotic manipulation,” in Conference on Robot
Learning, 2022. [Online]. Available: https://arxiv.org/abs/2209.05451

[18] K. Saha, V. R. Mandadi, J. Reddy, A. Srikanth, A. Agarwal,
B. Sen, A. Singh, and M. Krishna, “Edmp: Ensemble-of-costs-guided
diffusion for motion planning,” ArXiv, vol. abs/2309.11414, 2023.
[Online]. Available: https://arxiv.org/abs/2309.11414

[19] A. Murali, A. Mousavian, C. Eppner, A. Fishman, and D. Fox,
“Cabinet: Scaling neural collision detection for object rearrangement
with procedural scene generation,” 2023 IEEE International
Conference on Robotics and Automation (ICRA), pp. 1866–1874,
2023. [Online]. Available: https://arxiv.org/abs/2304.09302

[20] A. Fishman, A. Murali, C. Eppner, B. Peele, B. Boots, and
D. Fox, “Motion policy networks,” in Proceedings of the 6th
Conference on Robot Learning (CoRL), 2022. [Online]. Available:
https://arxiv.org/abs/2210.12209

[21] A. H. Qureshi, M. J. Bency, and M. C. Yip, “Motion planning
networks,” 2019 International Conference on Robotics and Automation
(ICRA), pp. 2118–2124, 2019. [Online]. Available: https://arxiv.org/
abs/1806.05767

[22] P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, and
D. Ramanan, “Object detection with discriminatively trained part
based models,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 32, pp. 1627–1645, 2010. [Online]. Available:
https://ieeexplore.ieee.org/document/5255236

[23] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886–893 vol.
1, 2005. [Online]. Available: https://ieeexplore.ieee.org/document/
1467360

[24] S. Ross, G. J. Gordon, and J. A. Bagnell, “A reduction of imitation
learning and structured prediction to no-regret online learning,” in
International Conference on Artificial Intelligence and Statistics,
2010. [Online]. Available: https://arxiv.org/abs/1011.0686

[25] S. LaValle, “Planning algorithms,” Cambridge University Press
google schola, vol. 2, pp. 3671–3678, 2006. [Online]. Available:
https://lavalle.pl/planning/

[26] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, May 2005. [Online].
Available: https://biorobotics.ri.cmu.edu/book/

[27] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun,
“Anytime search in dynamic graphs,” Artificial Intelligence, vol.
172, no. 14, pp. 1613–1643, 2008. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S000437020800060X

[28] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional
configuration spaces,” IEEE transactions on Robotics and Automation,
vol. 12, no. 4, pp. 566–580, 1996. [Online]. Available: https:
//ieeexplore.ieee.org/document/508439

[29] R. Bohlin and L. E. Kavraki, “Path planning using lazy prm,” in
Proceedings 2000 ICRA. Millennium conference. IEEE international
conference on robotics and automation. Symposia proceedings (Cat.
No. 00CH37065), vol. 1. IEEE, 2000, pp. 521–528. [Online].
Available: https://ieeexplore.ieee.org/document/844107

[30] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching
tree: A fast marching sampling-based method for optimal motion
planning in many dimensions,” The International journal of robotics
research, vol. 34, no. 7, pp. 883–921, 2015. [Online]. Available:
https://arxiv.org/abs/1306.3532

[31] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp:
Gradient optimization techniques for efficient motion planning,” in
2009 IEEE international conference on robotics and automation.
IEEE, 2009, pp. 489–494. [Online]. Available: https://ieeexplore.ieee.
org/document/5152817

[32] K. Mombaur, “Using optimization to create self-stable human-like
running,” Robotica, vol. 27, no. 3, pp. 321–330, 2009. [Online].
Available: https://www.cambridge.org/core/journals/robotica/article/
abs/using-optimization-to-create-selfstable-humanlike-running/
855871E6530CCB6CA4AB1DADC4CB0DDE

[33] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning
with centroidal dynamics and full kinematics,” in 2014 IEEE-RAS
International Conference on Humanoid Robots. IEEE, 2014, pp.
295–302. [Online]. Available: https://ieeexplore.ieee.org/document/
7041375

[34] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow,
J. Pan, S. Patil, K. Goldberg, and P. Abbeel, “Motion planning
with sequential convex optimization and convex collision checking,”

https://doi.org/10.1146/annurev-control-061623-094742
http://msl.cs.uiuc.edu/~lavalle/papers/LavKuf01.pdf
https://ieeexplore.ieee.org/document/5152399
https://ieeexplore.ieee.org/document/5152399
https://ieeexplore.ieee.org/document/4082128
https://proceedings.neurips.cc/paper_files/paper/2003/file/ee8fe9093fbbb687bef15a38facc44d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2003/file/ee8fe9093fbbb687bef15a38facc44d2-Paper.pdf
http://msl.cs.illinois.edu/~lavalle/papers/Lav98c.pdf
https://arxiv.org/abs/1105.1186
https://arxiv.org/abs/2002.06589
https://arxiv.org/abs/1603.03490
https://arxiv.org/abs/1707.01888
https://arxiv.org/abs/2309.14545
https://arxiv.org/abs/2309.14545
https://arxiv.org/abs/2310.17274
https://www.researchgate.net/publication/304532888_Motion_Planning_as_Probabilistic_Inference_using_Gaussian_Processes_and_Factor_Graphs
https://www.researchgate.net/publication/304532888_Motion_Planning_as_Probabilistic_Inference_using_Gaussian_Processes_and_Factor_Graphs
https://www.researchgate.net/publication/304532888_Motion_Planning_as_Probabilistic_Inference_using_Gaussian_Processes_and_Factor_Graphs
https://arxiv.org/abs/1711.06391
https://arxiv.org/abs/1711.06391
http://dx.doi.org/10.1561/2300000059
http://dx.doi.org/10.1561/2300000059
https://arxiv.org/abs/2212.06817
https://arxiv.org/abs/2209.05451
https://arxiv.org/abs/2309.11414
https://arxiv.org/abs/2304.09302
https://arxiv.org/abs/2210.12209
https://arxiv.org/abs/1806.05767
https://arxiv.org/abs/1806.05767
https://ieeexplore.ieee.org/document/5255236
https://ieeexplore.ieee.org/document/1467360
https://ieeexplore.ieee.org/document/1467360
https://arxiv.org/abs/1011.0686
https://lavalle.pl/planning/
https://biorobotics.ri.cmu.edu/book/
https://www.sciencedirect.com/science/article/pii/S000437020800060X
https://www.sciencedirect.com/science/article/pii/S000437020800060X
https://ieeexplore.ieee.org/document/508439
https://ieeexplore.ieee.org/document/508439
https://ieeexplore.ieee.org/document/844107
https://arxiv.org/abs/1306.3532
https://ieeexplore.ieee.org/document/5152817
https://ieeexplore.ieee.org/document/5152817
https://www.cambridge.org/core/journals/robotica/article/abs/using-optimization-to-create-selfstable-humanlike-running/855871E6530CCB6CA4AB1DADC4CB0DDE
https://www.cambridge.org/core/journals/robotica/article/abs/using-optimization-to-create-selfstable-humanlike-running/855871E6530CCB6CA4AB1DADC4CB0DDE
https://www.cambridge.org/core/journals/robotica/article/abs/using-optimization-to-create-selfstable-humanlike-running/855871E6530CCB6CA4AB1DADC4CB0DDE
https://ieeexplore.ieee.org/document/7041375
https://ieeexplore.ieee.org/document/7041375

The International Journal of Robotics Research, vol. 33, no. 9, pp.
1251–1270, 2014. [Online]. Available: https://dl.acm.org/doi/10.1177/
0278364914528132

[35] J. Pan and D. Manocha, “Fast probabilistic collision checking for
sampling-based motion planning using locality-sensitive hashing,” The
International Journal of Robotics Research, vol. 35, no. 12, pp. 1477–
1496, 2016.

[36] N. D. Ratliff, J. Issac, D. Kappler, S. Birchfield, and D. Fox,
“Riemannian motion policies,” arXiv preprint arXiv:1801.02854,
2018. [Online]. Available: https://arxiv.org/abs/1801.02854

[37] C.-A. Cheng, M. Mukadam, J. Issac, S. Birchfield, D. Fox,
B. Boots, and N. Ratliff, “Rmp flow: A computational graph for
automatic motion policy generation,” in Algorithmic Foundations of
Robotics XIII: Proceedings of the 13th Workshop on the Algorithmic
Foundations of Robotics 13. Springer, 2020, pp. 441–457. [Online].
Available: https://arxiv.org/abs/1811.07049

[38] C. D. Bellicoso, F. Jenelten, P. Fankhauser, C. Gehring, J. Hwangbo,
and M. Hutter, “Dynamic locomotion and whole-body control for
quadrupedal robots,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 3359–3365.
[Online]. Available: https://ieeexplore.ieee.org/document/8206174

[39] J. Jankowski, L. Brudermüller, N. Hawes, and S. Calinon, “Vp-sto:
Via-point-based stochastic trajectory optimization for reactive robot
behavior,” in 2023 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2023, pp. 10 125–10 131. [Online].
Available: https://arxiv.org/abs/2210.04067

[40] M. Bhardwaj, B. Sundaralingam, A. Mousavian, N. D. Ratliff, D. Fox,
F. Ramos, and B. Boots, “Storm: An integrated framework for
fast joint-space model-predictive control for reactive manipulation,”
in Conference on Robot Learning. PMLR, 2022, pp. 750–759.
[Online]. Available: https://arxiv.org/abs/2104.13542

[41] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep
hierarchical feature learning on point sets in a metric space,”
Advances in neural information processing systems, vol. 30, 2017.
[Online]. Available: https://arxiv.org/abs/1706.02413

[42] X. Yu, Y. Rao, Z. Wang, Z. Liu, J. Lu, and J. Zhou, “Pointr:
Diverse point cloud completion with geometry-aware transformers,”
in Proceedings of the IEEE/CVF international conference on
computer vision, 2021, pp. 12 498–12 507. [Online]. Available:
https://arxiv.org/abs/2108.08839

[43] W. Yuan, A. Murali, A. Mousavian, and D. Fox, “M2t2:
Multi-task masked transformer for object-centric pick and place,”
arXiv preprint arXiv:2311.00926, 2023. [Online]. Available: https:
//arxiv.org/abs/2311.00926

[44] A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox,
“6-dof grasping for target-driven object manipulation in clutter,” in
2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 6232–6238. [Online]. Available: https:
//arxiv.org/abs/1912.03628

[45] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and
J. Peters, “An algorithmic perspective on imitation learning,” Found.
Trends Robotics, vol. 7, pp. 1–179, 2018. [Online]. Available:
https://arxiv.org/abs/1811.06711

[46] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural net-
work,” in NIPS, 1988. [Online]. Available: https://proceedings.neurips.
cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf

[47] M. Bain and C. Sammut, “A framework for behavioural cloning,”
in Machine Intelligence 15, 1995. [Online]. Available: https:
//dl.acm.org/doi/10.5555/647636.733043

[48] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, K. Choromanski,
T. Ding et al., “Rt-2: Vision-language-action models transfer web
knowledge to robotic control,” ArXiv, vol. abs/2307.15818, 2023.
[Online]. Available: https://arxiv.org/abs/2307.15818

[49] Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black,
O. Mees et al., “Octo: An open-source generalist robot policy,” https://
octo-models.github.io, 2023. [Online]. Available: https://octo-models.
github.io/

[50] T. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning fine-
grained bimanual manipulation with low-cost hardware,” ArXiv, vol.
abs/2304.13705, 2023. [Online]. Available: https://arxiv.org/abs/2304.
13705

[51] H. Bharadhwaj, J. Vakil, M. Sharma, A. Gupta, S. Tulsiani,
and V. Kumar, “Roboagent: Generalization and efficiency in robot
manipulation via semantic augmentations and action chunking,” 2023.
[Online]. Available: https://arxiv.org/abs/2309.01918

[52] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.
[Online]. Available: https://arxiv.org/abs/1706.03762

[53] M. Laskey, J. Lee, R. Fox, A. D. Dragan, and K. Goldberg, “Dart:
Noise injection for robust imitation learning,” in Conference on Robot
Learning, 2017. [Online]. Available: https://arxiv.org/abs/1703.09327

[54] L. Ke, J. Wang, T. Bhattacharjee, B. Boots, and S. S. Srinivasa,
“Grasping with chopsticks: Combating covariate shift in model-free
imitation learning for fine manipulation,” 2021 IEEE International
Conference on Robotics and Automation (ICRA), pp. 6185–6191,
2021. [Online]. Available: https://arxiv.org/abs/2011.06719

[55] R. Kumar, A. Mandalika, S. Choudhury, and S. S. Srinivasa, “Lego:
Leveraging experience in roadmap generation for sampling-based
planning,” 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1488–1495, 2019. [Online]. Available:
https://arxiv.org/abs/1907.09574

[56] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling
distributions for robot motion planning,” 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 7087–7094,
2018. [Online]. Available: https://arxiv.org/abs/1709.05448

[57] C. Chamzas, Z. K. Kingston, C. Quintero-Peña, A. Shrivastava,
and L. E. Kavraki, “Learning sampling distributions using local 3d
workspace decompositions for motion planning in high dimensions,”
2021 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1283–1289, 2021. [Online]. Available: https://arxiv.org/
abs/2010.15335

[58] C. Zhang, J. Huh, and D. D. Lee, “Learning implicit sampling
distributions for motion planning,” 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 3654–
3661, 2018. [Online]. Available: https://arxiv.org/abs/1806.01968

[59] M. Bhardwaj, S. Choudhury, and S. A. Scherer, “Learning heuristic
search via imitation,” in Conference on Robot Learning, 2017.
[Online]. Available: https://arxiv.org/abs/1707.03034

[60] M. Danielczuk, A. Mousavian, C. Eppner, and D. Fox, “Object
rearrangement using learned implicit collision functions,” in Proc.
IEEE Int. Conf. Robotics and Automation (ICRA), 2021. [Online].
Available: https://arxiv.org/abs/2011.10726

[61] D. C. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep
neural networks for image classification,” 2012 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 3642–3649, 2012.
[Online]. Available: https://arxiv.org/abs/1202.2745

[62] A. Fishman, C. Paxton, W. Yang, D. Fox, B. Boots, and N. D.
Ratliff, “Collaborative interaction models for optimized human-robot
teamwork,” 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 11 221–11 228, 2020. [Online].
Available: https://ieeexplore.ieee.org/document/9341369

[63] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2017. [Online]. Available: https:
//arxiv.org/abs/1711.05101

[64] K. K. Hauser and V. Ng-Thow-Hing, “Fast smoothing of manipulator
trajectories using optimal bounded-acceleration shortcuts,” 2010 IEEE
International Conference on Robotics and Automation, pp. 2493–
2498, 2010. [Online]. Available: https://ieeexplore.ieee.org/document/
5509683

[65] R. Diankov, “Automated construction of robotic manipulation
programs,” Ph.D. dissertation, Carnegie Mellon University,
Robotics Institute, August 2010. [Online]. Available: http:
//www.programmingvision.com/rosen diankov thesis.pdf

[66] K. V. Wyk, M. Xie, A. Li, M. A. Rana, B. Babich, B. N.
Peele et al., “Geometric fabrics: Generalizing classical mechanics
to capture the physics of behavior,” IEEE Robotics and Automation
Letters, vol. 7, pp. 3202–3209, 2022. [Online]. Available: https:
//arxiv.org/abs/2109.10443

[67] C. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
77–85, 2017. [Online]. Available: https://arxiv.org/abs/1612.00593

[68] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and
W. Burgard, “Octomap: an efficient probabilistic 3d mapping
framework based on octrees,” Autonomous Robots, vol. 34, pp. 189
– 206, 2013. [Online]. Available: https://link.springer.com/article/10.
1007/s10514-012-9321-0

[69] A. Millane, H. Oleynikova, E. Wirbel, R. Steiner, V. Ramasamy,
D. Tingdahl, and R. Siegwart, “nvblox: Gpu-accelerated incremental

https://dl.acm.org/doi/10.1177/0278364914528132
https://dl.acm.org/doi/10.1177/0278364914528132
https://arxiv.org/abs/1801.02854
https://arxiv.org/abs/1811.07049
https://ieeexplore.ieee.org/document/8206174
https://arxiv.org/abs/2210.04067
https://arxiv.org/abs/2104.13542
https://arxiv.org/abs/1706.02413
https://arxiv.org/abs/2108.08839
https://arxiv.org/abs/2311.00926
https://arxiv.org/abs/2311.00926
https://arxiv.org/abs/1912.03628
https://arxiv.org/abs/1912.03628
https://arxiv.org/abs/1811.06711
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://dl.acm.org/doi/10.5555/647636.733043
https://dl.acm.org/doi/10.5555/647636.733043
https://arxiv.org/abs/2307.15818
https://octo-models.github.io
https://octo-models.github.io
https://octo-models.github.io/
https://octo-models.github.io/
https://arxiv.org/abs/2304.13705
https://arxiv.org/abs/2304.13705
https://arxiv.org/abs/2309.01918
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1703.09327
https://arxiv.org/abs/2011.06719
https://arxiv.org/abs/1907.09574
https://arxiv.org/abs/1709.05448
https://arxiv.org/abs/2010.15335
https://arxiv.org/abs/2010.15335
https://arxiv.org/abs/1806.01968
https://arxiv.org/abs/1707.03034
https://arxiv.org/abs/2011.10726
https://arxiv.org/abs/1202.2745
https://ieeexplore.ieee.org/document/9341369
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://ieeexplore.ieee.org/document/5509683
https://ieeexplore.ieee.org/document/5509683
http://www.programmingvision.com/rosen_diankov_thesis.pdf
http://www.programmingvision.com/rosen_diankov_thesis.pdf
https://arxiv.org/abs/2109.10443
https://arxiv.org/abs/2109.10443
https://arxiv.org/abs/1612.00593
https://link.springer.com/article/10.1007/s10514-012-9321-0
https://link.springer.com/article/10.1007/s10514-012-9321-0

signed distance field mapping,” 2023. [Online]. Available: https:
//arxiv.org/abs/2311.00626

[70] K. Goldberg, “Completeness in robot motion planning,” in
Proceedings of the Workshop on Algorithmic Foundations of Robotics,
ser. WAFR. USA: A. K. Peters, Ltd., 1995, p. 419–429. [Online].
Available: https://goldberg.berkeley.edu/pubs/completeness.pdf

[71] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” IEEE
Robotics & Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.
[Online]. Available: https://ieeexplore.ieee.org/document/6174325

[72] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient
approach to single-query path planning,” Proceedings 2000 ICRA.
Millennium Conference. IEEE International Conference on Robotics
and Automation. Symposia Proceedings (Cat. No.00CH37065),
vol. 2, pp. 995–1001 vol.2, 2000. [Online]. Available: https:
//ieeexplore.ieee.org/document/844730

[73] M. Esposito, “realtime urdf filter,” https://github.com/IFL-CAMP/
easy handeye, 2024.

[74] N. Blodow, “realtime urdf filter,” https://github.com/blodow/realtime
urdf filter, 2024.

[75] M. Bhardwaj, “franka motion control,” https://github.com/
mohakbhardwaj/franka motion control, 2024.

https://arxiv.org/abs/2311.00626
https://arxiv.org/abs/2311.00626
https://goldberg.berkeley.edu/pubs/completeness.pdf
https://ieeexplore.ieee.org/document/6174325
https://ieeexplore.ieee.org/document/844730
https://ieeexplore.ieee.org/document/844730
https://github.com/IFL-CAMP/easy_handeye
https://github.com/IFL-CAMP/easy_handeye
https://github.com/blodow/realtime_urdf_filter
https://github.com/blodow/realtime_urdf_filter
https://github.com/mohakbhardwaj/franka_motion_control
https://github.com/mohakbhardwaj/franka_motion_control

	Introduction
	Related Work
	Methodology
	Behavior Cloning for Collision Avoidance
	Architecture
	Loss Function
	Training Implementation

	Expert-Guided Fine-Tuning

	Data Generation Pipeline
	Experiments
	Simulated Experiments
	Avoid Everything
	Classical Methods
	Motion Policy Networks
	DAgger
	Balancing Collision Avoidance and Success Rate

	Performance on Real Robot Hardware

	Limitations
	Conclusion
	References

